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Making Newton’s second law work in a rotating reference frame is a challenge.  Consider 
a rigid body undergoing pure rotational motion on an axis through a fixed point inside the 
object.  We found that the linear velocity of a particle at location 𝑟 inside or on the object is 

given by �⃗� = 𝜔��⃗ × 𝑟.  In other words 𝑑𝑟
𝑑𝑑

= 𝜔��⃗ × 𝑟, or in general for any vector 𝑒 in the rigid 

body 𝑑𝑒
𝑑𝑑

= 𝜔��⃗ × 𝑒.  We showed that this equation also works for the three unit vectors �̂�𝑖 
attached the coordinate axes of a reference frame rotating at angular velocity 𝜔��⃗  on an axis 

through it’s origin, 𝑑�̂�𝑖
𝑑𝑑

= 𝜔��⃗ × �̂�𝑖. 

We then calculated the relationship between the time-derivative of a vector 𝑄�⃗  as seen in 
an inertial reference frame S0, to the derivative of the same vector seen in the rotating 
reference frame S.  We assume that the two reference frames have the same origin, but frame 
S is rotating about an arbitrary axis Ω� through the origin at a rate Ω.  The time-derivatives are 

related as �𝑑𝑄
�⃗

𝑑𝑑
�
𝑆0

= �𝑑𝑄
�⃗

𝑑𝑑
�
𝑆

+ Ω��⃗ × 𝑄�⃗ .  This equation says that the time derivative of the vector 

as witnessed in the inertial reference frame consists of any change in its magnitude or 
direction as seen in the non-inertial reference frame, plus the change brought about by the 
fact that the vector 𝑄�⃗  is embedded in a rotating rigid body (or more generally it is being 
carried around by the rotating coordinate system). 

We applied the time derivative twice to the coordinate vector of an object as seen in the 
rotating (non-inertial) reference frame.  Newton’s second law can now be written for an 
observer in a rotating reference frame as 𝑚�̈� = �⃗�𝑛𝑒𝑑 + 2𝑚�̇� × Ω��⃗ + 𝑚�Ω��⃗ × 𝑟� × Ω��⃗ , where 
�⃗�𝑛𝑒𝑑 are the forces acting on the particle as determined by an observer in an inertial reference 
frame.  The two additional “inertial forces” on the right are called the Coriolis force and the 
centrifugal force, respectively.  Note that we assumed that the rotation vector Ω��⃗  is 
independent of time, otherwise there will be more terms. 

We considered the centrifugal (“center-fleeing”) force for a stationary observer on the 
surface of the earth.  (A better name for it is “axis-fleeing”.)  This force has a direction that is 
directly away from the axis of rotation of the earth and can be written as F�⃗ 𝐶𝐶 =
𝑚Ω2𝑟 sin𝜃 𝜌�, where 𝑟 is the distance from the center of the earth, 𝜃 is the polar angle of the 
location on the surface (also known as the co-latitude) and 𝜌� is the radial unit vector from 
cylindrical coordinates.  This force has a maximum magnitude near the equator, but goes to 
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zero at the poles.  The centrifugal force modifies the free-fall acceleration and direction 
under the influence of gravity.  It creates a new effective gravitational acceleration vector of 
�⃗� = �⃗�0 + Ω2𝑅 sin𝜃 𝜌�, where �⃗�0 is the bare Newtonian gravity acceleration vector that points 
directly to the center of the earth, and 𝑅 is the radius of the earth.  The radial component of 
this vector is 𝑔𝑟𝑟𝑑 = 𝑔0 − Ω2𝑅 sin2 𝜃, showing that things weigh a bit less at the equator 
than at the north/south pole.  The effect is small, only about 0.3%.  The tangential component 
of �⃗� is 𝑔𝑑𝑟𝑛𝑡 = Ω2𝑅 sin𝜃 cos 𝜃, with a maximum value at 45o latitude.  This component 
produces a 0.1o tilt of �⃗� with respect to the direction of �⃗�0 at most. 

The Coriolis force �⃗�𝐶𝐶𝑟 = 2𝑚�̇� × Ω��⃗  depends on the state of motion of the object.  In fact 
it resembles the force on a charged particle in a magnetic field.  The ‘charge’ is 2𝑚 and the 
‘magnetic field’ is the angular velocity vector Ω��⃗ .  The particle will be deflected as it travels 
through this ‘field’.  In the northern hemisphere the deflection is to the right, while in the 
southern hemisphere it is in the opposite direction because Ω��⃗  has a substantial component 
into the ground (hence the phrase ‘down under’).  The magnitude of the Coriolis force for an 
object on the surface of the earth moving at 50 m/s is quite small, resulting in an acceleration 
of at most 0.007 m/s2.  The Coriolis force is significant for objects with large mass (air 
masses, hurricanes, etc.), or for objects moving quickly (artillery shells and ICBMs). 

We considered the motion of the Foucault pendulum.  The demonstration showed that the 
pendulum moves in a fixed plane, as seen from an inertial reference frame.  An inertial 
observer sees that the plane of oscillation is fixed and that the forces acting on the bob create 
no torque that will cause the plane of oscillation to change.  However, in a rotating reference 
frame, the pendulum appears to move in a series of planes that rotate clockwise, as seen from 
above (in the northern hemisphere).  The pendulum is made of a light wire of length L  
supporting a bob of mass m.  The equation of motion of the bob as seen in the non-inertial 
frame is 𝑚�̈� = �⃗�𝑛𝑒𝑑 + 2𝑚�̇� × Ω��⃗ + 𝑚�Ω��⃗ × 𝑟� × Ω��⃗ , where the net force identified from an 
inertial reference frame is the vector sum of tension in the wire and gravity: �⃗�𝑛𝑒𝑑 = 𝑇�⃗ + 𝑚�⃗�0.  
This is the bare gravity force that points toward the center of the earth.  Earlier today we saw 
that bare gravity can be combined with the centrifugal force and re-named effective gravity: 
�⃗� = �⃗�0 + Ω2𝑅 sin𝜃 𝜌�.     We designate “up” or the +z-direction to be the direction away 
from �⃗�, and y to be the “north” direction, and x to be the “east” direction.  In this way, the 
angular velocity vector for the earth Ω��⃗  points in the y-z plane at an angle 𝜃 with respect to the 
“up” (z) direction. 

http://www.physics.umd.edu/courses/Phys410/Anlage_Fall14/Foucault%20Pendulum.pdf
http://www.physics.umd.edu/deptinfo/facilities/lecdem/services/demos/demosd5/d5-13.htm

